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The interplay between activity and elasticity often found in active and living systems triggers a
plethora of autonomous behaviors ranging from self-assembly and collective motion to actuation.
Amongst these, spontaneous self-oscillations of mechanical structures is perhaps the simplest and
most wide-spread type of non-equilibrium phenomenon. Yet, we lack experimental model systems
to investigate the various dynamical phenomena that may appear. Here, we report self-oscillation
and synchronization transitions in a centimeter-sized model system for one-dimensional elasto-active
structures. By combining precision-desktop experiments of elastically coupled self-propelled particles
with numerical simulations and analytical perturbative theory, we demonstrate that the dynamics
of single chain follows a Hopf bifurcation. We show that this instability is controlled by a single
non-dimensional elasto-active number that quantifies the interplay between activity and elasticity.
Finally, we demonstrate that pairs of coupled elasto-active chains can undergo a synchronization
transition: the oscillations phases of both chains lock when the coupling link is sufficiently stiff.
Beyond the canonical case considered here, we anticipate our work to open avenues for the under-
standing and design of the self-organisation and response of active artificial and biological solids,
e.g. in higher dimensions and for more intricate geometries.

Introduction. — Active matter systems exhibit excep-
tional collective, non-equilibrium properties resulting in
anomalous dynamical and self-organizing behaviour that
challenge conventional laws of statistical mechanics [1–
10]. While researches have extensively focused on ac-
tive fluids [2, 11]—which consist of collections of individ-
ual active particles with no particular geometry [12–16],
active solids—which have a well defined reference state
and hence exhibit elastic rather than viscous properties
at long timescales [17–19]—have been much less studied,
despite their potential in mimicking living matter and
forming novel active materials [18–20].

Among all kinds of mechanical properties of active
solids, self-oscillations are vital for biological systems
such as flagella and cilia [21–23] and offer the prospect
of autonomous mechanical behaviors in designer mate-
rials [18, 19, 24]. It is now well established that one-
dimensional active chains exhibit flagellar motion: on
the one hand, experimental studies have reported self-
oscillatory behavior and synchronization in biological
and colloidal systems [25–28]; on the other hand, the-
oretical and numerical studies have suggested that self-
oscillations emerge from the competition between activ-
ity and elasticity [21–23, 26, 29–39]. Despite these ad-
vances, there are as of yet few model experimental plat-
forms in which the predicted bifurcation scenarios that
lead to self-oscillations and synchronization can be veri-
fied.

Here, to investigate dynamical transitions in elasto-
active solids, we construct the experimental setup for a
simplest form of active solids by elastically constrain-
ing centimeter-sized active particles in one-dimensional
chains. By controlling the elasticity of such structures,
we uncover the nature of the transition to self-oscillations
and synchronisation. We find the transition to self-

oscillatory behavior is governed by a super-critical Hopf

FIG. 1. Emergence of Self Oscillations in elasto-active
chains (a) Configurations of 7 active particles connected by
a flexible rubber chain (b) zoomed in details of two active
particles unveiling the design of the microbot (c) a close-up
of the linkage between each particle with width (W), thick-
ness (H) and length (L). (d) Histogram of the active force
measurements conducted at 0.05 mm/min. (e)-(f) Snapshots
of the trajectories of the active particles showing the oscilla-
tions changed from self-amplified to overdamped with W =
4.56mm, 4.25mm and 1.77mm corresponding to elasto-active
number σ = 0.166, 0.214 and 0.695 respectively.
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FIG. 2. Characterisation of the dynamics of elasto-
active chains.(a) Snapshot of the elasto-active chain with
W=17.7mm during its self-oscillation. (b) Time series of the
angle between the first and last particle (mean polarisation)
was one of the parameters we chose to characterize the sys-
tem, blue and orange represent the σ = 0.695 and σ = 0.166
chain respectively. With the average of tangential angles of
the particles (mean curvature) being the other parameter,
plotting mean polarisation (Θ) against mean curvature (Ω)
gives (c) a hysteresis loop suggesting the system being time-
irreversible. (d) Schematics of an elasto-active chain of 7 pen-
dulums with active forces. (e)-(f) Simulation results at σ=0.8
showing good agreement with the experimental results

bifurcation and that the underlying mechanism is a non-
linear feedback between the direction of the active forces
and the nonlinear elastic deflections. We find that syn-
chronization between two elasto-active chains is mediated
by elastically driven alignment, in contrast with active
fluids. Our work paves the way to a better understanding
of elasto-active instabilities and provide design guidelines
for autonomous behaviors in active solids.

Experimental design of active chains. — Our system
consists of 7 5cm commercial self-propelled microbots
(Hexbug Nano v2) elastically coupled by a laser-cut sili-
con rubber chain pinned at one end as shown in FIG.1(a).
The self-propelling behaviour of the microbot is achieved
by its soft rubber legs (see FIG.1(b))interacting repeti-
tively and impulsively with the ground [8, 40]. By tuning
the width of the connection (W in FIG.1(c)), we are able
to manipulate the stiffness of the chain. We measure
the pulling force of a single microbot on a tensile test
machine (Instron 5940 Series, load cell 5N with a reso-
lution of 0.5mN) above a PET board, the results fluctu-
ated rapidly due to the impulsive movement of the mi-
crobot and exhibited Gaussian distribution with a mean
of 15.7mN and a standard deviation of 3.1mN (shown as
FIG.1(d)). When constrained at zero velocity, the mi-
crobot exerts a force in the direction of its polarisation
which is parallel to the chain’s axis at rest and point
in the same direction, towards the anchor point of the

chain. We placed the elasto-active chain on a black PET
board and then tracked the motion of the active parti-
cles with a camera (Basler acA2040-90µm, 4MPx, 60fps).
The coupling force is provided by another laser-cut silicon
rubber chain, connecting the two chains through plastic
pins. The configurations of the elasto-active chains and
coupling chains are further explained in Appendix A.

Transition to self-oscillations. — The chain with the
largest width in between the active particles was slightly
pushed off from the equilibrium and stayed at the same
position without further significant movements as shown
in FIG.1 (e). We then gradually reduced the width of the
connections, at W = 4.25±0.1mm, the self-oscillation be-
haviour started to emerge (FIG.1 (f)) suggesting a com-
petition between activity and elasticity: Active forces
from active particles destabilise the elastic chain, which
in turn, through deformation, re-orient the polarisation
of the particle, ultimately leading to self-oscillation. The
magnitude of the oscillations increases drastically (shown
in FIG.1 (g)) with decreasing W thanks to the compe-
tition between buckling and active force. We chose to
characterise the motion of the elasto-active chains in term
of mean curvature Θ(t) :=

∑N−1
i=1 θi+1(t) − θi(t), which

amounts to the angle between the first and last parti-
cle on the chain Ω(t) = θ7 − θ1 and in term of mean

polarization Ω(t) :=
∑N−1
i=1 θi(t), where θi(t) is the in-

stantaneous orientation of particle i w.r.t. the vertical
axis (FIG.2 (a)). With such parameters, the dynamics of
the oscillation can be visualized easily, as shown in FIG.2
(b), the red line depicts the mean curvature time series
of the softest chain (see FIG.1 (g)) while the blue line
corresponds to the chain with the widest connection, the
scenario shown in FIG. 1(e). Plotting the time series of
mean curvature against mean polarisation in FIG.2(c),
we see an asymmetric hysteresis loop. Such limit cycle
suggests the time-irreversible nature of the system [41].

Active pendulums model. — What is the origin of
such transition? Inspired by the Ziegler destabilisation
paradox in structural mechanics [42–45] and the exist-
ing numerical models of active filaments [46–49], we con-
struct a discrete model, where we boil the complexity
of the elastic interactions down to three-body bending
forces between the particles and the complexity of the
vibration-induced dynamics to viscous overdamped dy-
namics. The discrete model is based on a chain of seven
pendulums (shown as FIG.2(d)) with one end fixed. The
pendulums have a length ` and are connected to their
neighbors via a torsional spring of torsional stiffness C.
Each pendulum i is driven by a constant active force
Fa

i = −F a(cos θiex + sin θiey) exerted on its end and in
the direction the pendulum. We also introduce isotropic
viscosity γ contributing to a dissipative force on the end
of each pendulum that is only dependent on its velocity,
and assume no inertia in the system. We then collected
all the terms in δθi for each i according to Virtual-Work
Theorem and constructed N nonlinear coupled ODEs
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FIG. 3. An active system featuring a Hopf bifurcation
at σ = 0.15. Simulation and experimental results showing the
evolution of (a) amplitude and (b)frequency with increasing σ
respectively for the chain withN = 7. The inset in (a) is a log-
log plot demonstrating the power law between Θ and σ. (c)
Real and imaginary (d) part of the eigenvalues of the Jacobian
of Eqs. (1)-(2) vs. elasto-active number σ for a minimal chain
with N = 2. In all panels, the gray area represents the stable
region.

that describe the motion of the elasto-active chain (fur-
ther details in Appendix B). where σ = F a`/C is the
elasto-active parameter, and τ = γ`2/C a characteristic
timescale. We estimate the torsional stiffness C from
their geometry using beam theory (See Appendix A).
From the average velocity of the robots when they are
freely moving va = 0.025 ± 0.005m/s and their average
force when they are pinned Fa = 15.7 ± 3.1mN (Fig.
1(d)), we estimate the damping coefficient γ = Fa/va =
0.63 ± 0.11N.s/m. Using these parameters, we solve the
system of ODEs numerically (See Appendix B) and find
a good agreement with the experimental results, both for
the time series of average polarisation (Fig. 2(e)). We ob-
serve an agreement between the experiments and the sim-
ulation in the trend of the hysteresis (Fig. 2(f)), here the
differences are due to the energy loss in the experimental
scenarios. This agreement shows that nonlinear geome-
try, torsional stiffness, active force and isotropic viscous
dissipation are sufficient ingredients to successfully cap-
ture the essence of the self-oscillation phenomenon. Our
elasto-active model is controlled by a single timescale τ
and a single non-dimensional parameter σ, which will
allow us to probe the nature of the transition to self-
oscillations in the following.

Super-critical Hopf bifurcation. — We ran experi-
ments and simulations over a wide range of the elasto-

active parameter σ, collected the time average of the
amplitudes (Fig. 3 (a))〈Θ〉 and the rescaled oscillation
frequency f × τ (Fig. 3 (b)) in the mean polarisation
time series and plotted against elasto-active parameter
σ. While for low values of σ, the chain remains straight
without oscillations, we see that above a critical value
σc = 0.16±0.005, the oscillation amplitude 〈Θ〉 increases
rapidly as 〈Θ〉 ∼ (σ − σc)0.5 (Fig. 3 (a-inset)), while the
rescaled frequency increases linearly. To further eluci-
date the nature of the transition to self-oscillations, we
carry out a linear stability analysis on the set of non-
linear coupled equations (See Appendix B), and observe
that at σ = 0.15, the real part of a pair of eigenvalues be-
comes positive, while the corresponding imaginary parts
of these eigenvalues are equal and opposite and monoton-
ically increase (Fig. 3(cd)). This transition is a hallmark
of a Hopf-bifurcation. The exponent 0.5 in the experi-
mental and numerical data suggests that this bifurcation
is supercritical. To verify the nature of the bifurcation
theoretically, we restrict our attention to two pendulums
with N = 2, which is the simplest case where the model
could exhibit the bifurcation. The time-evolution of such
elasto-active chain is governed by the following equations

τ
(

2θ̇1+θ̇2 cos (θ1−θ2)
)

= θ2−2θ1 + σ sin (θ1 − θ2) (1)

τ
(
θ̇1 cos (θ1−θ2)+θ̇2

)
= θ1−θ2. (2)

In the Appendix B, we use a perturbative expansion and
perform a few algebraic manipulations to demonstrate
that Eqs. (1-2) can be mapped onto the Landau-Stuart
equation

dz

dt
= (i+σ−3)z+

(
i

(
17

4
− σ

)
−
(
σ − 5

2

))
|z|2z, (3)

where z is the complex variable defined by z := θ1 +
i
√

(σ − 2)/(4− σ)θ2. Such equation is the canonical
form of a supercritical Hopf-bifurcation. Many earlier
works had observed experimentally or numerically self-
oscillation phenomena [21, 25, 50] or theoretically pro-
posed models with Hopf-bifurcations [23, 29, 30, 33, 49,
51]; here, we unambiguously demonstrate experimentally,
numerically and theoretically in a single system of active
chains that the supercritical Hopf bifurcation underlies
the transition to self-oscillations and is primarily con-
trolled by the elasto-active number σ.

Frequency entrainment synchronisation transition. —
Our model system also allows us to explore synchronisa-
tion phenomena between two active chains (FIG.4 (a)-
(d)). We demonstrate experimentally and numerically
that an elastic coupling allows for a frequency entrain-
ment synchronization transition. We selected two chains
both with an elasto-active number σ1 = 0.8 (the chain on
the left hand side in FIG 4 (a)) and an elasto-active num-
ber σ2 = 0.6 (the chain on the right hand side in FIG 4
(a)) and connected them via a coupling spring of variable
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FIG. 4. Synchronisation of two elasto-active chains
with different elasticity coupled by the first particles
only. (a) Snapshot of a pair of elasto-active chains with dif-
ferent elasticity coupled by another stiff silicon rubber chain.
(b) Evolution of the instantaneous phases Φ1 (dashed lines)
and Φ2 (solid lines) of two elasto-active chains with coupling
strength K = 0.8 (yellow lines) and K = 1.2 (brown lines).
(c) Instantaneous frequency difference extracted from the in-
stantaneous phase difference Ψ vs. rescaled coupling stiffness
κ. (d) Schematics of the numerical model adding a coupling
spring (K) to two previously established elasto-active chains.
(e)-(f) Same data as (b)-(c) for the numerical simulations.

stiffness K. We also performed simulations over a range
of stiffness K that contains what we have utilised in the
experiments (FIG.4 (e)-(f)). The rescaled coupling stiff-
ness is κ := K`2/C1 (where C1 is the stiffness of the left
chain). To analyze the synchronization transition, we
first extracted the oscillation signals from both chains.
We then calculated the instantaneous phases Φ1(t) and
Φ2(t) (see Appendix A) of each timeseries (Fig. 4(b) and
(e) for experiments and simulations respectively). For
low coupling stiffness (yellow lines), both Φ1(t) and Φ2(t)
increase linearly, but with different slope, which can be
described as two chains oscillating with different frequen-
cies. On the contrary, for large coupling stiffness (brown
lines), both instantaneous phases Φ1(t) and Φ2(t) align
on the lowest slope (i.e. both chains beat at the lowest
frequency of the two). We performed experiments and

numerical simulations and measured the frequency mis-
match δν from the slope of the instantaneous phase dif-
ference Ψ := Φ2(t)−Φ1(t) over a wide range of coupling
stiffness and found that the synchronization transition
occurs at the critical value κ = 1.1 (Fig. 4(c) and (f)).
To rationalize this finding, we show in Appendix B that
the instantaneous phase difference Ψ(t) between two flag-
ella with N = 2 is

dΨ

dt
= dν − ε

cos Ψ0
sin(Ψ−Ψ0), (4)

where dν, ε and Ψ0 are functions of the elasto-active
number of each chain and of the coupling stiffness be-
tween the chains (See Appendix B for closed forms).
This equation has been well studied before for the
investgation of synchronization phenomena [53]. An
analysis of this equation predicts synchronization for
|ε/ cosψ0| > |dν|, with a square root singularity [53].
As we show in the appendix, this condition is met when
the coupling stiffness exceeds the threshold value κc =
11/(4

√
6)
√

(σ − 3)|1− ρ|, where σ is the elasto-active
number of the left chain and where ρ is ratio between
the elasto-active number of the right chain over that of
the left chain. This result thus demonstrates that the
synchronization scenario of the two elasto-active chains
corresponds to that of a classic nonisochronous synchro-
nization, which is characterized by a constant phase shift
in the synchronized region. In addition, the two chains
will synchronize for lower coupling if they are closer to
the bifurcation or when they have similar elasto-active
numbers. In summary, we have captured experimentally,
numerically and analytically the synchronization transi-
tion of two elastically coupled active chains.

Conclusion. — In conclusion, we have shown that
elasto-active chains exhibit transitions to self-oscillations
and synchronization. Our study establishes macroscopic
active structures as a powerful tool to investigate dy-
namical and autonomous behavior of active solids and
living matter. We anticipate the study of more intricate
geometries, higher dimensions as well as non-reciprocal
phenomena to be fascinating future research directions.
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Löwen, Charles Reichhardt, Giorgio Volpe, and Gio-
vanni Volpe, “Active particles in complex and crowded
environments,” Rev. Mod. Phys. 88, 045006 (2016).

[5] J. Deseigne, O. Dauchot, and H. Chate, “Collective mo-
tion of vibrated polar disks,” Phys Rev Lett 105, 098001
(2010).

[6] C. A. Weber, T. Hanke, J. Deseigne, S. Léonard, O. Dau-
chot, E. Frey, and H. Chaté, “Long-range ordering of vi-
brated polar disks,” Phys. Rev. Lett. 110, 208001 (2013).

[7] Antoine Bricard, Jean-Baptiste Caussin, Nicolas
Desreumaux, Olivier Dauchot, and Denis Bartolo,
“Emergence of macroscopic directed motion in popula-
tions of motile colloids,” Nature 503, 95 (2013).

[8] O. Dauchot and V. Demery, “Dynamics of a self-
propelled particle in a harmonic trap,” Phys Rev Lett
122, 068002 (2019).

[9] Tamás Vicsek and Anna Zafeiris, “Collective motion,”
Physics Reports 517, 71 – 140 (2012), collective motion.

[10] Aparna Baskaran and M Cristina Marchetti, “Statistical
mechanics and hydrodynamics of bacterial suspensions,”
Proceedings of the National Academy of Sciences 106,
15567–15572 (2009).

[11] David Saintillan and Michael J Shelley, “Active sus-
pensions and their nonlinear models,” Comptes Rendus
Physique 14, 497–517 (2013).

[12] Peter Reimann, “Brownian motors: noisy transport far
from equilibrium,” Physics Reports 361, 57 – 265 (2002).

[13] Walter F Paxton, Kevin C Kistler, Christine C Olmeda,
Ayusman Sen, Sarah K St. Angelo, Yanyan Cao,
Thomas E Mallouk, Paul E Lammert, and Vincent H
Crespi, “Catalytic nanomotors: autonomous movement
of striped nanorods,” Journal of the American Chemical
Society 126, 13424–13431 (2004).

[14] Jonathan R Howse, Richard AL Jones, Anthony J Ryan,
Tim Gough, Reza Vafabakhsh, and Ramin Golestanian,
“Self-motile colloidal particles: from directed propul-
sion to random walk,” Physical review letters 99, 048102
(2007).

[15] Eric Lauga and Thomas R Powers, “The hydrodynamics
of swimming microorganisms,” Reports on Progress in
Physics 72, 096601 (2009).

[16] WCK Poon, “From clarkia to escherichia and janus: The
physics of natural and synthetic active colloids,” Proc.
Int. Sch. Phys. Enrico Fermi 184, 317–386 (2013).

[17] Rhoda J Hawkins and Tanniemola B Liverpool, “Stress
reorganization and response in active solids,” Physical
review letters 113, 028102 (2014).

[18] M. Brandenbourger, X. Locsin, E. Lerner, and
C. Coulais, “Non-reciprocal robotic metamaterials,” Nat
Commun 10, 4608 (2019).

[19] Colin Scheibner, Anton Souslov, Debarghya Banerjee, Pi-
otr Surówka, William T. M. Irvine, and Vincenzo Vitelli,
“Odd elasticity,” Nat. Phys. 16, 475–480 (2020).

[20] Y. Ozkan-Aydin, D. I. Goldman, and M. S. Bhamla,
“Collective dynamics in entangled worm and robot

blobs,” Proc Natl Acad Sci U S A 118 (2021),
10.1073/pnas.2010542118.

[21] KE Machin, “Wave propagation along flagella,” Journal
of Experimental Biology 35, 796–806 (1958).

[22] Charles J Brokaw, “Molecular mechanism for oscilla-
tion in flagella and muscle,” Proceedings of the National
Academy of Sciences 72, 3102–3106 (1975).
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Appendix A. Experimental methods

Construction of one-dimensional elasto-active chain

Our elasto-active chain is simply constructed by 7 active units in a laser-cut silicon rubber chain. We fix one end
of the chain with a clamp mechanically fixed by silicon glue on a 1.5mx1.5m black PET board. A camera (Basler
acA2040-90µm) was mounted on an aluminium profile above the chain to track its motion.

active units - HEXBUG nano® (random color) plays the role of active particle in our system. It is a self-propelled
minirobot powered by a tiny motor (with AG13/LR44 1.5V button battery) and 12 rubber legs as shown in Fig. 1.(b).

Laser-cut rubber chain - We first constructed the models of the rubber chains using Autodesk Inventor® then
printed the model with Universal Laser PLS6.150D. Width of the connection in the model increased from 2mm to
5mm with a 0.2mm step, the rest of the geometries unchanged. The ’ears’ on the side of the constraining units were
designed for the convenience of connecting two single chains together. The circular end was made to ease the fixation
to the clamp. Real geometries of the chains printed from the laser cutter differs slightly with the geometries in the
model, they were measured again using vernier caliper. The flexibility of the silicone rubber chain brought negligible
errors in geometry measurements, the real thickness was set to be the value at which the chain can not be clipped by
the caliper anymore.

Realisation of the coupled elasto-active chains

Taking two elasto-active chains with W = 2mm and 2.8mm respectively, we connected the two of them with different
coupling chains. The coupling chain was fixed onto the ’ears’of the elasto-active chains with plastic pins, the elasto-
active chains themselves were fixed by the clamps in the same way as the singular chains. The highest stiffness was
provided by a simple rubber chain (380mmx15mm), we then tuned the stiffness by adding triangular teeth to the
simple geometry. The coupling chain with 1 teeth possessed the lowest stiffness while adding more teeth to it slightly
increased the stiffness. Schematics of the chains can be found in the supplementary materials.

Calibration and measurements

Torsional Stiffness - As mentioned in the main paragraph, we measured the Young’s modulus of the silicon rubber
with Instron 5940 Series at a strain rate of 0.05 mm/min. Torsional stiffness (C) of the connections shown in FIG.1(c)
was calculated [54] with:

C =
GJ

L
(A1)

where G was taken as the Young’s modulus (0.239MPa) and J is the torsional constant that was determined with:

J = w3h(
16

3
− 3.36

2

h
(1− w4

12h4
)) (A2)

where h and w was half the value of H and W shown in FIG.1(c)
Tracking of Motion - Motion of the active chains was recorded by the camera (Basler acA2040-90µm) at a frame rate
of 60fps and resolution of 4Mpx. The images were binarized and eroded, we then detected and tracked the active
units using the opencv module under Python.

Instantaneous phase - The exact oscillation frequency of the two coupled active-chains was obtained by computing
their instantaneous phase over time. We expressed the signal s(t) in its analytical form sa(t):

sa(t) = s(t) + jŝ(t) = sm(t)ejφ(t), (A3)

where ŝ(t) , H[s(t)] is the Hilbert transform of the signal and sm(t) is the instantaneous amplitude of the envelope.
The instantaneous phase phase of the signal corresponds to φ(t) , arg[sa(t)] and is plotted in Fig. 4b&c in the main
text. The instantaneous frequency was calculated via a linear regression on the instantaneous phase. The Fig 4c&e
show the mismatch between the two instantaneous frequencies of the chains.
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Appendix B.Theoretical Models

Derivation of equations of motion

Single elasto-active chain

We aim to describe the active chain shown in Fig. 1a by a model of a elasto-active chain of N pendula, with follower
forces. The potential energy is

U =
C

2
θ2

1 +
C

2

N−1∑
i=1

(θi − θi+1)2, (A4)

where C is the torsional stiffness of the links between each pendulum and θi the angle of pendulum i with respect to
the ex axis in Fig. 1(d). Upon an infinitesimal variation of the internal degrees of freedoms, the change in potential

energy is δU =
∑N
i=1(∂U/∂θi)δθi that yields

δU = C(2θ1 − θ2)δθ1 + C(2θ2 − θ1θ3)δθ2 + · · ·+ C(2θN−1 − θN−2θN )δθN−1 + C(θN − θN−1)δθN . (A5)

In addition, each particle i located at the endpoint of each pendulum undergoes an active force Fai = −F a(cos θiex +
sin θiey), aligned with the pendulum i and a dissipative force, which we assume is viscous −γ(ẋiex + ẏiey). γ
is the damping coefficient, F the follower force exerted on each pendulum, ` the length of each pendulum and xi
(yi) the horizontal (vertical) displacement of the end point of pendulum i. ˙ denote the time derivative. There-
fore, the work of these non-conservative forces upon infinitesimal variation of the internal degrees of freedoms
{δx1, δx2, · · · , δxN , δy1, δy2, · · · , δyN} of the system reads

δW = −γ
N∑
i=1

(ẋiδxi + ẏiδyi)− F a
N∑
i=1

(cos θiδxi + sin θiδyi) , (A6)

Thanks to the geometrical relations xi = `
∑i
j=1 cos θj and yi = `

∑i
j=1 sin θj , we can substitute δxi =

`
∑i
j=1− sin θjδθj , δyi = `

∑i
j=1 cos θjδθj , ẋi = `

∑i
j=1− sin θj θ̇j , ẏi = `

∑i
j=1 cos θj θ̇j , and Eq. (A6) can be rewritten

as a function of the angles

δW = −γ`2
N∑
i=1

i∑
j=1

i∑
k=1

(
cos(θj − θk)θ̇jδθk

)
− F a`

N∑
i=1

i∑
j=1

(sin(θi − θj)δθj) . (A7)

According to the Virtual-Work Theorem, at mechanical equilibrium, the work of external forces δW (Eq. (A7)) is
equal to the change of potential energy δU (Eq. (A5)). Collecting all the terms in δθi for each i, With dimensionless
parameters: σ = F a`/C and τ = γl2/C, we find N nonlinear coupled ordinary differential equations that describe
the motion of the elasto-active chain.

0 = 2θ1−θ2−σ
N∑
j=1

sin(θ1−θj)+τ

Nθ̇1 +

N∑
j=2

θ̇jcos(θ1−θj)

 for i= 1 (A8)

0 = 2θi−θi−1−θi+1−σ
N∑
j=i

sin(θi−θj)

+τ

(N−i+1)

i∑
j=1

θ̇jcos(θi−θj)+

N∑
j=i+1

(N−j+1)θ̇jcos(θi−θj)

 for i∈ [2, N − 1] (A9)

0 = θN−θN−1+τ

N∑
j=i

θ̇jcos (θN−θj) for i= N, (A10)

which are the equations that we solve numerically in Figs. 2 and 3 or the Main Text.
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Coupled elasto-active chains

For a pair of coupled elasto-active chains with different elasticity, we took the work done by the dissipative force
Fd and the active force Fa as a sum of these values of both chains. The resulting δW is thus:

δW =− γl2
 N∑
i=1

 i∑
j=1

(
i∑

k=1

δθkθ̇j cos (θj − θk)

)+

N∑
i=1

 i∑
j=1

(
i∑

k=1

δφkφ̇j cos (φj − φk)

)
− F a`

 N∑
i=1

 i∑
j=1

δθj sin (θi − θj)

+

N∑
i=1

 i∑
j=1

δφj sin (φi − φj)

 , (A11)

where θi and φi depict the angle between each particle and the horizontal axis of individual chains. We then added
the effect of the coupling force to the sum of δU of both chains and rendered:

δU = θ1 (δθ1(C1 +K)− δφ1K) + φ1 (δφ1(C2 +K)− δθ1K) + C1

N∑
i=2

δθi (θi − θi−1) + C1

N−1∑
i=1

δθi (θi − θi+1)

+ C2

N∑
i=2

δφi (φi − φi−1) + C2

N−1∑
i=1

δφi (φi − φi+1) , (A12)

where C1 and C2 are the torsional spring constant in each chain and K is the stiffness of the coupling chain. We
introduced the following dimensionless parameters

ρ =
C2

C1
, κ =

K`2

C1
, σ =

F a`

C1
and τ =

γl2

C1
, (A13)

which allowed to express the coupled ordinary differential equations as follows

0 = (2 + κ) θ1 − θ2 − κφ1 − σ
N∑
j=1

sin(θ1−θj) + τ

Nθ̇1 +

N∑
j=2

(N − j + 1))θ̇jcos(θ1 − θj)

 ;

0 = (2ρ+ κ)φ1 − ρφ2 − κθ1 − σ
N∑
j=1

sin(φ1−φj) +

τ

Nφ̇1 +

N∑
j=2

(N − j + 1))φ̇jcos(φ1 − φj)

 for i= 1 (A14)

0 = 2θi − θi−1 − θi+1 − σ1

N∑
j=i

sin(θi−θj) +

τ

(N−i+1)

i∑
j=1

θ̇jcos(θi−θj)+

N∑
j=i+1

(N−j+1)θ̇jcos(θi−θj)

 ;

0 = ρ(2φi − φi−1 − φi+1)− σ
N∑
j=i

sin(φi−φj) +

τ

(N−i+1)

i∑
j=1

φ̇jcos(φi−φj)+

N∑
j=i+1

(N−j+1)φ̇jcos(φi−φj)

 for i∈ [2, N − 1] (A15)

0 = θN−θN−1+τ

N∑
j=i

θ̇jcos (θN−θj) ;

0 = ρ(φN−φN−1)+τ

N∑
j=i

φ̇jcos (φN−φj) for i= N. (A16)
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We solved numerically these coupled non-linear equations in Fig. 4 of the Main Text. Below in the Section “Synchro-
nization of two coupled elasto-active chains”, we considered the case N = 2 and performed a perturbative expansion
to map these ODEs onto an equation that describes the time evolution of the instantaneous phase difference between
two elasto-active chains.

Linear limits

Eqs. (A8)-(A10) are impossible to solve explicitly in their full generality, but we can obtain some information about
the behavior of the system by considering its linearisation close to the limit where all the angle are zero.

0 = 2θ1−θ2−
Fa2

C

N∑
j=1

(θ1−θj)+
γa2

C

Nθ̇1 +

N∑
j=2

θ̇j

 (A17)

0 = 2θi−θi−1−θi+1−
Fa2

C

N∑
j=i

(θi−θj)+
γa2

C

(N−i+1)

i∑
j=1

θ̇j+

N∑
j=i+1

(N−j+1)θ̇j

 for i∈ [2, N − 1] (A18)

0 = θN−θN−1+
γa2

C

N∑
j=i

θ̇j . (A19)

The stability of the system can be investigated by injecting the following ansatz

θ1

θ2

...

...
θi
...
θN


︸ ︷︷ ︸
1×N

=



θ0
1

θ0
2
...
...
θ0
i
...
θ0
N


︸ ︷︷ ︸
1×N

exp(λt), (A20)

in Eqs. (A17)-(A19) and requiring that the determinant of such system of equation to be zero, which which can be
rewritten in the following matrix form:

0
0
...
...
0
...
0


︸︷︷︸
1×N

=



2 b− k2 0 · · · · · · · · · · · · 0
−k2 2k2 + λ −k2 0 · · · · · · · · · 0

0 −k2 2k2 + λ −k2 0 · · · · · · 0

0 0
. . .

. . .
. . .

. . .
...

...
...

... −k2 2k2 + λ −k2 0
...

... · · · · · · 0 −k2 2k2 + λ −k2

0 0 · · · · · · · · · 0 −k2 k2


︸ ︷︷ ︸

N×N



θ1

θ2

...

...
θi
...
θN


︸ ︷︷ ︸
1×N

. (A21)

In Fig. 3 of the Main Text, we plot the real and imaginary parts of λ to discuss the stability of the elasto-active chain
and the nature of the bifurcation.

Derivation of the canonical form of the Hopf bifurcation

In this section, we focus on the minimal case of an elasto-active chain with two active particles N = 2, see Eqs. (1)-
(2) of the Main Text and show that they can be mapped onto the Landau-Stuart equation, which is the normal form
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of a Hopf-bifurcation. First, we rewrite these equations as

θ̇1 =
−σ sin(θ1 − θ2) + (θ1 − θ2) cos(θ1 − θ2) + 2θ1 − θ2

τ (cos2(θ1 − θ2)− 2)
(A22)

θ̇2 =
σ sin(2θ1 − 2θ2) + 2(θ2 − 2θ1) cos(θ1 − θ2)− 4θ1 + 4θ2

τ(cos(2θ1 − 2θ2)− 3)
(A23)

We find that the Jacobian of this system of equation admits conjuguate eigenvalues, whose real part crosses zero at
ρ = 3. We therefore introduce the variable µ := ρ − 3 and we will focus in the following on the transition point at
µ = 0. In order to map onto the canonical form, we define the variable z := aθ1 + ibθ2, where a and b are arbitrary
real numbers. To find which values of a and b allow up to find the canonical form, we first linearize the equation. We
find

τ ż =
(b+ ia)(a(µ+ 1)− ib(µ− 1))

2ab
z −

i
(
a2(µ+ 1) + b2(µ− 1)

)
2ab

z∗ + O(z2). (A24)

The linear term of the canonical form of the Hopf-bifurcation has no z∗ term, therefore we choose a and b such that
this term cancels out, that is a = 1 and b/a =

√
(1 + µ)/(1− µ). We now use these values and rewrite ż up to cubic

order in z and linearize the expression in µ

τ ż = (i+ µ)z +
(10 + 4i)µ+ (−1 + 8i)

8
|z|2z

+
− (1− 2i) (16µ+ 8(2− 3i))

8
|z|2z∗ +

(6− 9i)− (24 + 14i)µ

24
z3 +

(14 + 12i)µ+ (6− 9i)

24
z∗3

+ O(z4).

(A25)

Variable changes of the form z = z̃ + αpq z̃
pz̃∗

q
, with p ∈ [0, 3], q ∈ [0, 3] and p+ q = 3 can cancel out the cubic terms

of Eq. (A25), except for p = 2 and q = 1, where the associated constraint diverges at the bifurcation µ = 0 [52].
Thereby, we obtain the final equation

τ ż = (i+ µ)z +

(
−1− µ

2
+ i

(
−1

8
+

5

4
µ

))
|z|2z + O(z4). (A26)

The prefactor of the cubic term is called the first Lyapunov coefficient and its real part is negative for small µ, therefore
the Hopf bifurcation is supercritical [55], as discussed in the Main Text.

Synchronization of two coupled elasto-active chains

In this section, we investigate theoretically the nature of the synchronization transition observed in Fig. 4 of the
Main Text. To this end, we focus on with the minimal case of two elastically coupled elasto-active chains. Following
Eqs. (A14-A16), such elasto-active chains are described by the following set of ODEs:

θ̇1 = −−θ1 (cos (θ1 − θ2) + 2) + σ sin (θ1 − θ2) + θ2 (cos (θ1 − θ2) + 1)− κ(θ1 − φ1)

τ (cos2 (θ1 − θ2)− 2)
(A27)

θ̇2 =
2 cos (θ1 − θ2) (θ2 + κφ1)− 2θ1 ((κ+ 2) cos (θ1 − θ2) + 2) + σ sin (2 (θ1 − θ2)) + 4θ2

τ (cos (2 (θ1 − θ2))− 3)
, (A28)

φ̇1 = −θ1κ− φ1 (κ+ ρ cos (φ1 − φ2) + 2ρ) + ρφ2 (cos (φ1 − φ2) + 1) + σ sin (φ1 − φ2)

τ (cos2 (φ1 − φ2)− 2)
(A29)

φ̇2 =
−2 cos (φ1 − φ2) (φ1(κ+ 2ρ)− θ1κ)− 4ρφ1 + 2ρφ2 (cos (φ1 − φ2) + 2) + σ sin (2 (φ1 − φ2))

τ (cos (2 (φ1 − φ2))− 3)
. (A30)

Based on the analysis carried out above on a single chain, we change variables z1 := θ1 + a1iθ2, where a1 =√
(1 + µ)/(1− µ) and z2 := φ1 + a2iφ2, where a2 =

√
(3 + µ− 2ρ)/(−3− µ+ 4ρ) and then to linear order in µ

and ρ − 1. Such limits correspond to the vicinity of the bifurcation µ � 1 and that the case where the two chains
have almost the same elasticity ρ − 1 � 1. Such hypothesis is not strictly necessary to proceed and does not affect
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the spirit of the following derivation, yet it drastically simplifies the algebraic manipulations. As a result, we obtain
the two coupled ODEs:

ż1 = (i+ µ)z1 +

(
−1− µ

2
+ i

(
−1

8
+

5

4
µ

))
|z1|2z1 +

κ

2
(i(µ+ 1)− 1)(z1 + z†1 − z2 + z†2) (A31)

ż2 = (i(3µρ− 3µ+ ρ) + µ− 3ρ+ 3) z2 +

(
i

8
(−9µρ+ 19µ− 31ρ+ 30)− 3µρ+

5µ

2
+
ρ

2
− 3

2

)
|z2|2z2

+
κ

2
(i(−4µρ+ 5µ− 3ρ+ 4)− 1)(z2 + z†2 − z1 + z†1) (A32)

These two coupled ODEs represent two coupled oscillators close to a Hopf bifurcation. To proceed further, we assume
that the coupling between the chains κ � 1. We can then study the coupling as a perturbation about the two limit
cycles of the two elasto-active chains [36]. This hypothesis relies on the assumption that the coupling does not affect
the magnitude the self-oscillations, but that it affect their phase. In other words, if we introduce the amplitude and
phase of the complex variables z1 and z2 by introducing the following variable changes z1 = R1e

iΦ1 and z2 = R2e
iΦ2 ,

the amplitudes will be given by the uncoupled chains and with remain constant R1 =
√
µ and R2 =

√
µ− 3(ρ− 1),

and the time-evolution of the phases will be given by the following equations

dΦ1

dt
= 1− µ

8
+
κ

2

[
1 +

√
µ− 3ρ+ 3
√
µ

(sin(Φ2 − Φ1)− cos(Φ2 − Φ1))

]
(A33)

dΦ2

dt
= 1− 1

8
(µ+ 11(1− ρ)) +

κ

2

[
1−

√
µ

√
µ− 3ρ+ 3

(sin(Φ1 − Φ2)− cos(Φ1 − Φ2))

]
, (A34)

which is linearized with respect to µ, ρ−1 and κ and where the non-resonant terms proportional to sin(2Φ1), sin(2Φ2)
and sin(Φ1 + Φ2), on the right-hand side have been neglected. Such terms typically average out and do not contribute
to changing the relative phase between the two oscillators Φ1 +Φ2 [36]. Finally, we can subtract the last two equations
to express the equation governing the time-evolution of the instantaneous phase difference between the two chains
Ψ := Φ2 − Φ1 to obtain

dΨ

dt
= dν + ε(sin Ψ + tan Ψ0 cos Ψ), (A35)

where dν := 11
8 (ρ− 1), ε := κ(2µ−3ρ+3)

2
√
µ
√
µ−3ρ+3

and tan Ψ0 := 3(ρ−1)
2µ−3ρ+3 . This equation can be recast as

dΨ

dt
= dν +

ε

cos Ψ0
sin Ψ−Ψ0, (A36)

which is a standard equation for non-isosynchronous synchronization [36]. The synchronization occurs when |dν| <
|ε/ cos Ψ0|, which, translated in the parameters of the problem, corresponds to coupling constants κ larger than
κc = 11/(4

√
6)
√
µ|1− ρ|. Synchronization occurs for vanishingly small coupling close to the bifurcation of the first

chain µ = 0 and in the limit where the two chains are identical, that is ρ = 1.
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