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Abstract

Glass beads are placed in the compartments of a horizontal square grid. This
grid is then vertically shaken. According to the reduced acceleration Ŵ of the
system, the granular material exhibits various behaviours. By counting the
number of beads in each compartment after shaking, it is possible to define
three regimes. At low accelerations, the grains remain in their compartment,
and the system is frozen. For very large accelerations, the grains bounce out of
the compartments and behave as a ‘binomial gas’: the system is homogeneous.
For intermediate accelerations, grains form clusters, i.e. grains gather in some
particular compartments. In that regime, the probability for a bead to escape
from a site depends on the number of beads contained in the concerned
compartment. The escape probability has been measured with respect to the
number of beads in a compartment. Above a given number of beads, the beads
remain trapped in the compartment. A basic numerical model reproduces some
of the results and allows us to explore the dependence on the initial conditions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A granular material exhibits hybrid properties that resemble the properties of a solid, a liquid

or a gas according to the external constraints [1]. The granular ‘gas’ state is obtained by

shaking a box containing grains, e.g. spherical beads. When the amplitude of the excitation

is large, the grains bounce in any direction, giving the apparent properties of a gas. However,

the gas is made of hard spheres which may rotate and collisions are not perfect. The system

is dissipative, because the total energy after a collision is lower than the energy before. These

simple additional ingredients confer to the granular gas state particular behaviours.

An experiment that concerns granular materials was reported in a vulgarization article

by Schlichting and Nordmeier in 1996 (it is not clear who discovered this phenomenon)

[2]. This experiment consists of a box that is compartmented by a central vertical wall that

allows exchange at the top. Initially, the same number of beads (millimetre size) is set in
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each compartment. When the vertical amplitude shaking is low, the grains remain in their

compartment. The amplitude is increased to allow grains to jump from one compartment to

another one. From a perfect gas point of view, the number of particles is roughly the same

in both compartments and some fluctuations can be considered. However, spontaneously,

the grains eventually gather in the same compartment. We observe a right–left symmetry

breaking. A basic and naı̈ve interpretation is that entropy spontaneously decreases: the

granular Maxwell’s demon was awakened. Actually, the apparent paradox is attributed to the

inelastic collisions of the beads. More exactly, the system is nonconservative which cannot

therefore be compared to the physics of an equilibrium state. A highly shaken granular material

is not a gas [4]. The coefficient of restitution, defined as the ratio between the total energy after

and before the impact, is lower than unity. After the impact, the grains have less energy and

consequently are not able to go as far as before the impact. The situation is amplified when

one bead hits an assembly of grains. Indeed, because of the numerous successive impacts,

the energy dissipates very quickly. The grain remains stuck in the cluster. Finally, when the

amplitude of the vibration is very large, the number of grains in each compartment balances

again. To sum up, according to the shaking amplitude, three ‘states’ have been identified: the

frozen state (beads remain in the same compartment), the clustering state, and the gas-like

state.

The experiment was revisited in 1999 by Eggers who found a theoretical argument founded

on hydrodynamics to explain the phenomenon [5, 6]. In 2001, Lohse’s group extended to

several aligned compartments experimentally [7] and theoretically [8]. Bifurcations and

transitions have been carefully analysed and extended to several compartments in 2006 [9]

and 2007 [15]. The gravity influence has been experimentally analysed using the diamagnetic

properties of the bismuth grains to control the gravity [14]. The critical acceleration of the

shaker for obtaining spontaneous symmetry breaking has been measured with respect to this

effective gravity. Finally, the granular Maxwell daemon has been thought to be used to

segregate a mixture of two granular species [10]. The influence of the bidispersity has been

revisited experimentally [11] and numerically [12, 13] in two compartments. Phase diagrams

have been determined according to the acceleration of the plate and the ratio of grain species.

Oscillations, i.e. regular exchanges of particles between the compartments, have been observed

in these later references.

This work generalized the phenomenon by considering a grid of square compartments

(figure 1, top). Looking from above, the lattice can be seen as a periodic potential that defines

many traps. Energy is provided by the shaker to the particles. When the energy is sufficient

compared to the potential barriers, the particles can jump from one trap to another. The

measurements consist of counting the number of beads in each compartment after a vibration

run. In this paper, we choose to use the maximum acceleration of the plate as the control

parameter. To provide a cursory glance at the results, according to this parameter, three

regimes can be observed: (i) no exchange, (ii) clustering and (iii) gas. The ability of a trap to

keep the particles has been measured and allows us to establish a simple model. Indeed, we

will show that for a fixed acceleration, the probability that a bead escapes from a compartment

depends on the number of beads in that compartment. Using only this parameter, a simple

model was built to reproduce clustering.

2. Experimental setup

On a square plate, a grid has been fixed. It is made of Nc = 9 × 9 = 81 square compartments.

Each compartment measures 23 mm on each side side and 30 mm high. The grains are glass

beads of 6 mm diameter. The coefficient of restitution, ε, given by the ratio between the



Granular gas in a periodic lattice 1467

(a) (b) (c)

Figure 1. Top: schematic view of the 9 by 9 grid. Bottom: snapshots of the grid during a sweep

in acceleration (at 25 Hz) between Ŵv = 0 to 4. (a) Initial state, one bead per compartment, (b)

clustering state and (c) gas state when Ŵv = 4. A movie can be seen at the link [3].

speed just after and just before a rebound, has been measured to be ε = 0.83. The coefficient

of restitution of a bead on a bead is rather difficult to determine. However, it is larger than

ε. The grid is vertically vibrated using an electromagnetic shaker (GW 55). The motion

is sinusoidal of amplitude, A, and of frequency, f , which is fixed to 25 Hz. The motion

is characterized by the reduced acceleration Ŵv = A(2πf )2/g where g is the gravity. The

acceleration is measured using an accelerometer that is fixed on the plate. A measurement

consists of stopping the vibration and counting the number of beads, n, in each compartment

after a time, T, that is assumed to be very long compared to the characteristic time between

two successive collisions. This later can be estimated to be 500 μs (≈ (nf )−1). The transient

state is considered as over after 300 s. The measurements have been taken afterwards.

3. Experimental results

As the initial state, we chose to place one bead per compartment. The number, N , of beads is

therefore fixed to 81. The plate is then vibrated at 25 Hz with a fixed amplitude. After 300 s,

the electromagnetic shaker is stopped. The beads are counted in each compartment. In doing

so, we obtain the number, Cn, of compartments filled with n beads, i.e. the distribution of filled

compartments. The experiments were carried out three times to smooth the distributions. The

proportion of beads located in the compartment populated by n beads is given by nCn/N . It

should be noted that
∑

i iCi/N = 1. In figure 2, this quantity is represented for three reduced
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Figure 2. Top: proportion of beads located in the compartment populated by n beads with respect

to the number of beads per compartment. Three reduced accelerations are represented: Ŵv = 1.6

(circles), 2.2 (triangles) and 3.8 (squares). A binomial distribution (equation (2)) normalized by N
is also plotted (blue crosses). Bottom: proportion of beads considered as being trapped (namely in

a compartment having more than nine beads) with respect to the acceleration Ŵv . The symbols are

the same as in the figure at the top. The vertical dashed line represents the acceleration threshold

Ŵv ≈ 2 for a bead to escape from a compartment. This value is deduced from figure 3. The curve

is only a guide.

accelerations that have been considered Ŵv = 1.6 (circles), 2.2 (triangles) and 3.8 (squares).

For very low acceleration, the beads cannot but stay in the trap. Up to Ŵv = 1.6, the beads

may jump high enough to escape a trap. The maximum of the distribution is located around

n ≈ 2. The dynamics are rather slow. It is not clear whether a stationary state is reached

(even after 600 s). On the other hand, above Ŵv = 2.2 till 3.5, clusters are rapidly observed.

When a compartment is filled with more than a given number of beads (in this case 9, see

below), n cannot but increase. Above Ŵv = 3.5, no cluster can be observed. On the contrary,

the proportion of compartments filled with one bead is the largest and monotonically decays
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Figure 3. Heights reached by a bouncing ball with a coefficient of restitution equal to 0.83 with

respect to the acceleration Ŵv at 25 Hz. The horizontal line represents the height of a compartment

at 30 mm and the height for which the centre of mass of the bead may be higher than the height of a

compartment. The continuous line represents the envelope curve and consequently the maximum

reachable height for the bead at the considered acceleration.

with n. In figure 1 (bottom), three snapshots of the grid are shown in three particular states

during an acceleration Ŵv sweep from 0 to 4. Figure 1(a) is the initial state, while figure 1(b)

presents a snapshot of the cluster state, clearly visible in the middle of the box. Finally, when

the acceleration is strongly increased, the beads jump easily from one compartment to another

and the distribution is drastically changed to a gas-like state (figure 1(c)).

It is possible to evaluate that the acceleration required to allow one single bead to escape

from a compartment depends on the coefficient of restitution of the bead on the plate. The

maximum height reached by a ball bouncing on a vibrated plate may be evaluated by computing

the trajectory of the ball. The algorithm can be found in [16]. In figure 3, the heights, H,

reached by the bouncing ball (ε = 0.83) during 500 jumps have been plotted as a function

of the acceleration, Ŵv . Each red point corresponds to one jump. The continuous line is the

envelope curve that delimits the maximum height reached by the bead along 500 successive

jumps. We may assume that the probability of escape is different from zero as soon as the

centre of mass of the bead is beyond 30 mm. According to this envelope curve, the bead

is allowed to escape when the height reached is higher than the so-called escape height, he,

given by the height of a compartment, i.e. beyond he = 30 mm. The horizontal dashed lines

represent the height of the compartment and the crossover height he. Consequently, at best,

the beads may escape the compartment at an Ŵv of around 2 when shaken at 25 Hz. Note

that these limits are held for one single bead in a compartment and that the interaction with

the borders of the compartment is not taken into account. These facts may explain that we

observe a few scarce exchanges below Ŵv = 2.

The intermediate state, i.e. when the beads are able to escape a trap but when large clusters

are not observed, is difficult to interpret. This regime is located between Ŵv = 1.5 and 2. Even

after 600 s, we cannot claim that a stationary state is reached. Most of the beads are located in

a compartment with another bead. That may suggest that when n is larger than 2, the particles
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remain trapped. On the other hand, the dynamics change drastically above Ŵv ≈ 2. The beads

may then easily jump from one compartment to another and clusters form rapidly.

In figure 2 (bottom), the proportion Pcluster of the beads located in a compartment containing

at least nine beads is represented with respect to the acceleration. This proportion is given by

Pcluster =
1

N

∑

i�9

iCi . (1)

The proportion Pcluster is found to be null between Ŵv = 0 and Ŵv = 2 for the considered

observation time. However, as explained in figure 3, above Ŵv = 2 the beads may escape

from the compartment. A vertical line has been plotted in figure 2 (bottom) to visualize the

threshold. Indeed, beyond this threshold, beads gather in clusters and consequently Pcluster

strongly increases. At Ŵv = 2.2, up to 80% of the beads are in a cluster. The proportion of

beads in the cluster decreases sharply to zero above Ŵv = 3.5. The experimental results show

that between Ŵv = 1 (when the beads start bouncing) and Ŵv = 1.5, no large clusters can be

observed. On the other hand, when the acceleration is above a certain threshold, large clusters

are observed, also within a narrow window of acceleration between 2.2 and 3.5. These values

depend on the frequency of the excitation, the coefficient of restitution of the beads and the

height of the compartment walls.

A transition is observed between Ŵv = 3.5 and Ŵv = 3.8. The beads gather in some of

the compartments when the acceleration is below Ŵv = 3.5. On the other hand, above this

acceleration, the beads are re-distributed among the compartments. At high accelerations, the

beads can easily jump out of a compartment. If the probability for a bead to be in a given

compartment is random, we may think that the distribution of the beads in the compartments

is a binomial one. Indeed, we may assume that one bead has a probability 1/Nc of landing

in a compartment. As there are N beads, the probability of finding n beads in a compartment

corresponds to the probability of observing n success out of N attempts with a probability

1/Nc of success. The distribution reads

Pn =

(

N

n

)

(1/Nc)
n(1 − 1/Nc)

(N−n), (2)

which is compared (blue crosses) to the distribution obtained experimentally with Ŵv = 3.8

in figure 2 (bottom). Good agreement is found between the model and the experiments. Note

that the distribution may be approximated by a Poisson distribution.

In order to define the trapping, the escape time, τe(n), of a bead out of a compartment

containing n beads has been evaluated. For this purpose, n beads are placed in a compartment.

A cap is placed above the compartment to avoid any escape and the studied acceleration,

Ŵv , is fixed. The cap is removed and a clock is started. The stop of the clock corresponds

to the first escape of any beads. The operation is repeated 50 times in order to plot the

cumulative distribution function F(τe(n)). The escape direction is isotropic. However, it is

recommended that the horizontality of the plate is checked carefully. In figure 4 (top), the

cumulate distribution function (CDF) of the escape time, τe, is represented for n =1–9 in a

semi-log plot (see the legend). The CDF is preferred to the probability distribution function

because the results are independent of any arbitrary choice for the bin size. The solid lines

represent fits with a Weibull law:

F(τe(n)) = 1 − exp(−τe(n)/λn)
kn , (3)

where λn and kn are the free fitting parameters. From the fits, when n � 5, the coefficient kn is

found close to unity. That means that the escape time behaves like an exponential distribution.

The probability of escape does not depend on time; it looks like a Poissonian process. For

small n, kn is found to range between 1.5 and 2. This means that the escape probability
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Figure 4. Top: cumulative distribution function F of escape times τe of one bead out of a

compartment containing n beads when Ŵv = 2.2 (see the legend). Bottom: mean value of τe from

equation (4) as a function of the number of beads contained in a compartment. The curve is a fit

using equation (5). Note that the symbols used for the top and bottom figures are the same.

increases with time. This should be interpreted as an ageing process. In order to compare the

escape time, the mean value, μ, of the escape time is plotted versus the number of beads, n, in

a compartment in figure 4 (bottom). This quantity is given as follows:

μ = λnŴ

(

1 +
1

kn

)

, (4)

where Ŵ is the gamma function. The escape time becomes very difficult to measure for n = 9

as the escape time is very large. Hou et al [11] have characterized the oscillation time by a

power that diverges for a critical maximum speed of the plate (that corresponds to a maximum
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acceleration of the plate). Similarly, the dependence of μ on n has been fitted by a divergence

power law,

μ ∝ |n − 9|β , (5)

where β is a fit parameter and is found to be −1.15. Strictly speaking, a divergent function

is not appropriate in our case as, beyond n = 9, the probability of escape is very small but

cannot be considered as zero.

The threshold number (here n = 9) to obtain a cluster depends on the geometry of the

compartment and on the bead–bead collision rate. Indeed, the cluster mechanism is related

to the energy dissipation during the numerous bead–bead shocks. Consequently, the more

the beads shock each other, the more clusters may form. There must exist a link between

the threshold number and the mean free path of the particles. The mean free path, ℓ, may be

evaluated as a function of the number of beads contained in the compartment. The simplest

way is to consider that each bead occupies the same space in the compartment: we divide the

volume of the compartment by the number of beads contained in the compartment. In doing

so, the mean distance between two particles is proportional to n−1/3. The number of shocks

per second is obtained by knowing the mean speed of the beads. The problem becomes rather

complex because the distribution of speed is unknown. Moreover, the collective motion of the

beads contained in a compartment must be studied as a non-dilute hard sphere gas which is

definitely not trivial.

To sum up the experimental results, three phases can be observed: frozen, clustering

and binomial gas. The clustering occurs in a narrow range of accelerations. In that range,

the compartment becomes a strong trap centre when more than eight beads are located in

it. The next section proposes to model the trapping strength of a site and to simulate the

clustering process for a large number of sites. The experiments are limited by the number

of compartments and by the influence of the side walls surrounding the whole grid. Even by

reproducing the experiments, it is quite difficult to obtain the distribution of the compartment

population when clusters occur since there are four to five clusters per experiment. We develop

a simple model in order to investigate the distribution of clusters in a large periodic system.

4. Network simulation

The simulation is a very simple application for describing the motion of the bead. The grid

is represented by a 512×512 matrix to which periodical conditions are applied. The value of

a matrix cell is characterized by the number of particles in that case. At each step, one grain

of each cell is asked to move randomly towards the north, south, east or west. The number of

steps has been fixed to 105 (stationary configurations are obtained). The escape probability,

Pout(n), is guided by a distribution function that depends on the number of beads in the site

and is directly inspired by the experimental results (figure 5). In doing so, the acceleration is

only implicitly taken into account as Pout(n) is a function of Ŵv . We consider here the case

for which clustering is present. It should be noted that the important feature of the function

Pout(n) is to provide a strong contrast of the escape probability beyond a given number n.

The escape probability is equal to 1 when n = 1 and then decreases rapidly to a value of

3 × 10−3 when n = 9. We found that the maximum number of beads that a compartment can

contain is about 70. We arbitrarily decided to have a symmetric function about the number

35. Consequently, the probability remains constant between 9 and 63. Above n = 63, Pout

increases towards 1 at n = 70 (corresponding to a full compartment) to take into account the

fact that the number of beads is limited in a compartment.
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Figure 5. Model for the escape probability Pout with respect to the number, n, of beads contained

in the compartment inspired by the experimental data.

Figure 6. Probability Pn of finding a compartment containing n beads. The legend indicates the

filling factor η.

Several initial conditions have been tested. We choose to tune the filling factor, η = N /Nc,

between 0.1 and 20. The beads are uniformly distributed. For example, for the initialization

of the number of beads per site and for η = 0.1, a compartment has one chance in ten to be

populated by one bead. Figure 6 compares the probability, Pn, of finding a compartment with

n beads for different filling factors η. For any filling fraction lower than 9, the vast majority

of the compartments contained zero particles (not represented in the log–log plot). For the

highest volume fraction shown, most of the beads remain in their initial compartment as the

escape probability is very low for such a highly populated compartment. When the system

is diluted (η = 0.1), compartments containing more than 35 beads can be found. In that
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situation, as soon as a site contained more than nine beads, it grows and continues to grow.

As there are few of them, they ‘pump’ the particles up to be completely full. For η in the

range 0.2–1, the distribution of Pn evolves towards an increase of compartments populated by

between 9 and 20 beads. The number of traps is larger than in dilute systems. Consequently,

they rapidly pump all the beads in their direct vicinity and can no longer grow as the system

is jammed in the numerous traps.

5. Conclusion

The exchange of particles between a periodical network of traps has been studied. According

to the energy provided by the plate (here through the control of the maximum acceleration,

Ŵv), several stationary states are observed. Starting from low forcing accelerations of the plate:

(i) the particles remain in their initial compartment (frozen state), (ii) the particles jump from

one compartment to another and gather in some of the compartments (cluster state) and (iii)

the particles may jump out of the compartment whatever the number of beads (‘binomial’ gas

state). In order to better describe the cluster state, the escape probability has been measured

with respect to the initial number, n, of beads in a compartment. A strong decrease of the

escape probability has been observed for a given number of beads (here n = 9). A simple

numerical model has been built in order to study the influence of the filling fraction on the

clustering.

This problem is particularly adapted to undergraduate students to assist a lecture on

statistical physics. Several concepts are applied such as distribution functions, particular

gasses, mean free paths, dissipative systems and bouncing ball nonlinearities.

Complementary experiments should be performed by measuring the influence of the initial

number of beads per compartment as suggested by the simulations. Moreover, the escape time

dependence with the acceleration may also be measured for other geometries, e.g. a larger

ratio between the grain size and compartment height.
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