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Confinement of a slender body into a granular array induces stress localization in the geometrically
nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium.
By varying the initial packing density of grains and the length of a confined elastica, we identify the critical
length necessary to induce jamming, and demonstrate how folds couple with the granular medium to
localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica
deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the
grains, suggesting the ordering of the granular array governs the deformation of the slender structure.
However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the
granular medium that illustrates the intricate coupling in elastogranular interactions.
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Consider the growth of an elastic rod within a granular
medium. As the rod elongates in a confined space, it will
bend to minimize its internal energy [1,2], reordering the
surrounding granular material to accommodate higher
arclength configurations. At low packing densities, the
rod feels little resistance from the grains [3], while as the
packing density is gradually increased to the point of
jamming, the granular material begins to exert a large,
inhomogeneous stress distribution on the elastic rod [4–8],
deforming the geometrically nonlinear structure. It is well
known that slender structures will localize stress in
response to a homogeneous stress distribution. Wrinkled
sheets on a fluid substrate exhibit a spontaneous up-down
symmetry breaking that tends toward an asymptotic isom-
etry [9–13], while wrinkled sheets on an elastic substrate
exhibit a period doubling instability and subsequent up-
down symmetry breaking characterized by a subharmonic
mode [14,15]. The nonlinear response of slender structures
to inhomogeneous stress distributions via coupling with
discrete media is less well understood, despite occurring
frequently in the natural world [16–18]. Stresses exerted by
soil on a growing root can dictate growth pathways [19–21]
and induce chiral, helical buckling [22–24]. Further, in dry
sand environments, sand vipers can burrow [25], and
desert-dwelling sandfish can swim within a granular bed
by propagating an undulatory traveling wave down their
rodlike bodies, enabling noninertial swimming [26].
These coupled, elastogranularmechanics have generally

been considered as local inhomogeneities or studied in
systems where the length scale of elastic deformation
exceeds by several orders of magnitude the grain size.
The question of how granular ordering can influence
deformation of a slender body, such as an elastica, has
remained open. In this Letter, we describe the connections
between jamming, ordering, and stress localization in an

elastogranular system through the use of simple scaling
arguments, and the observation of the relaxation of stresses
within the granular network through the vertical dislodging
of grains. These results will help to illuminate the ways
slender elastic structures interact with nonhomogeneous
and fragile media, behavior commonly seen in plant root
growth [24], the piercing of soft tissue [27], and the
reinforcement of jammed granular architectures [28,29].
To understand how the discrete, heterogenous behavior

of a granular medium couples with the nonlinear deforma-
tion of a slender continuum structure, we experimentally
considered the confinement of a planar elastica within a 2D
monolayer of soft, nearly frictionless spherical grains.
Individual packings are prepared by randomly populating
both sides of an initially straight, undeformed elastic
beam, with N approximately monodisperse grains (see
Supplemental Material [30]), such that the initial packing
fraction, ϕi ¼ πNr2/Bi, where r ¼ 8.9� 0.4 mm is the
average grain radius, N is the number of grains, and Bi is
the area of the ith side (i ¼ 1, 2), is the same on either side.
Prior to each run, the particles were mechanically agitated,
then allowed to settle to remove any hysteretic effects. The
geometrically nonlinear behavior of the elastica is depen-
dent on bending rigidity per unit width, Eh3/12, where E is
Young’s elastic modulus, and h is thickness. Elastic
instabilities and subsequent stress localization in flexible
rods are generally characterized by a region of maximum
curvature, κm ∼ A0/λ2, where A0 is the primary amplitude,
and λ is an effective buckling length. Here, we define λ as
the distance between the two primary maxima of defor-
mation A0 and A1 (see Fig. 1) [31]. We first quantify the
elastogranular interactions as the elastica’s arclength was
increased by a length Δ in a quasistatic manner from an
initial length L0 for a range of initial packing fractions ϕ0

[Figs. 1(i)–1(iii)].
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An elastica, clamped at its ends within fixed boundaries,
adopts a cosinelike deflection profile when injected into a
low density granular array, i.e., ϕ0 ≲ 0.3 [see Fig. 1(i)],
with its exact shape being governed by an elliptic integral
[32,33]. At larger packing fractions, 0.3≲ ϕ0 < ϕj, the
postbuckling geometry of the elastica breaks the initial left-
right symmetry between areas B1 and B2 with a maximum
amplitude that grows as A0/L0 ∼

ffiffiffiffiffiffiffiffiffiffi

Δ/L0
p

[Fig. 2(c)]. The
packing fraction on the side containing A0 increases, this
subsystem eventually reaching a jammed state at a critical
packing fraction ϕj ¼ 0.8305� 0.0135 [30], and a critical
elongation Δc [Fig. 2(a), blue circles]. Reordering of the
granular array, characterized by the global bond orientation
parameter Ψ6 ¼ jN−1PN

m¼1N
−1
b

PNb
n¼1 e

6iθmn j, occurs fol-
lowing the onset of jamming [Fig. 2(b), blue circles], along
with a slight drop in normalized distance between maxima,
λ/L0 [Fig. 2(d), green circles]. Following this reordering, λ
values are seen to remain constant as additional arclength is
injected into the system. Once a jammed state is reached
[see Fig. 1(iii)], the packing fraction remains constant as the
elastica’s arclength is increased. In high density granular
assemblies, (i.e., ϕ0 ≥ ϕj), the elastica buckles in an
antisymmetric mode two shape, with peaks (A0 and A1)
of similar amplitude [Fig. 2(b), red diamonds]. To accom-
modate increasing Δ, localized disturbances and disaggre-
gation of the granular array occurs in the neighborhood of
both A0 and A1 [Fig. 2(b), red diamonds]. In what follows,
we establish a physical model to describe these character-
istic elastogranular behaviors.
We begin by describing Δc, the arclength of elastica

necessary to induce jamming in a packing with ϕ0 < ϕj.
For the range of experimentally prepared packings, we find

that the initial half wavelength λ remains essentially
constant at low injection, when Δ/L0 < 0.1. This consis-
tency at low Δ across all investigated packing fractions
suggests that we may be able to probe our system for a
linearly derived length scale, an approach utilized in both
simulations and experiments of 2D granular systems
[34–38]. From this linear regime, we define a characteristic
length λc as the average of λ for 0 < Δ/L0 < 0.1. For low Δ
and initial packing fractions ϕ0 < ϕj, the elastica exhibits a
primarily mode one shape. Recalling that the primary
amplitude scales as A0/λ ∼

ffiffiffiffiffiffiffiffi

Δ/L
p

, we approximate the
buckled elastica as a triangle of base λc and height A0

[inset, Fig. 2(e)]. As the area on one side of the array is
reduced by 1

2
λ2c

ffiffiffiffiffiffiffiffi

Δ/L
p

, the packing fraction as a function of

Δ may be written as ϕðΔÞ ¼ πr2N/ðL0W0 − 1
2 λ

2
c

ffiffiffiffiffiffiffiffi

Δ/L
p Þ. It

follows that by separating the initial packing fraction ϕ0,
and considering the array at jamming, where ϕ → ϕj and
Δ → Δc, we arrive at a critical length of elastica needed to
jam a 2D array of soft, nearly frictionless spherical grains,
i.e., an effective elastogranular length,

Δc

L0

∼
�

L0

λc

�

4
�

1 −
ϕ0

ϕj

�

2

: ð1Þ
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FIG. 2. Changes in (a) packing fraction ϕ, (b) bond-orientation
order Ψ6, (c) primary and second amplitude A0 and A1, and
(d) peak-to-peak distance between amplitudes λ, in both pre-
(blue points) and postjammed (red diamonds) systems as the
elastica is injected ðΔ/L0Þ. Two characteristic lengths are seen to
emerge: (e) a critical injected arclength of elasticaΔc necessary to
induce jamming in a 2D granular array, and (f) the length of the
confinement region λc in which the elastica will localize
curvature, as a function of packing fraction.

FIG. 1. Shape profiles of the elastica as additional arclength Δ
is injected into a granular array of length L0, width W0 over a
range of initial experimental packing fractions: ϕ0 ¼ 0.1 (i),
ϕ0 ¼ 0.55 (ii), ϕ0 ≈ ϕj ¼ 0.835 (iii).
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Equation (1) is plotted with a slope of 1/2 in Fig. 2(e) along
with individual packings that jammed at a critical arclength
Δc, and captures the critical length to induce jamming very
well. This characteristic length is analogous to a length
scale recently found to describe the onset of bending of an
elastic filament within a granular flow [8].
Beyond the jamming threshold, the elastica always

localizes deformation over a finite length smaller than
L0 [Fig. 2(f)], similar to its behavior on a homogenous
elastic foundation [9–12,39]. Notably, this length diverges
when it approaches the jamming packing fraction.
Empirically, we can characterize our system by

λc ∼
1

ðϕ − ϕjÞα
: ð2Þ

Equation (2) best fits our measurements for α ¼ 0.185 [30].
Previous publications have already reported the observation
of diverging length scales in disordered granular media
subject to local stimuli, both experimentally [40] and via
simulations [34,36,41,42]. In our experiments, high pack-
ing fractions and monodisperse grains give rise to a highly
ordered granular array globally, while grains near the
localized deformation of the elastica tend to be disordered
]30 ]. These disordered grains are the most likely to

recirculate to accommodate additional elastica arclength
[43]. As the packing fraction increases, the maximum
number of disordered grains that can recirculate must
necessarily decrease, presenting an area of characteristic
size λg available for the elastic to deform within. Therefore,
we look for a similar relationship between λg and ϕ − ϕj in
the granular arrays by measuring the granular displacement
field that arises via the initial buckling of the elastic rod. By
measuring the characteristic length of grain motion λg, we
find a similar diverging length scale near jamming, such
that λg ∼ ðϕ − ϕjÞ−β, with β ¼ 0.19 [30,44]. The similarity
in these exponents suggests that as the elastic rod locally
applies a force on the granular media, it is limited in its own
deformation range due to the propagation of these forces
through the grains.
To understand how the local packing and order of the

granular array influences the shape of the confined elastica,
we compare the elastica shape and granular ordering of two
typical experiments (ϕ0 ¼ 0.70 and ϕ0 ¼ 0.90) in Fig. 3(a),
where each grain is colored by a measure of its local bond
orientation number, ψ6

m ¼ N−1
b

PNb
n¼1 e

6iθmn . In the non-
jammed array, the grains move freely to accommodate the
growing amplitudes of the elastica, while jammed arrays
must rearrange to accommodate the growing elastica. In
Fig. 3(a) (when ϕ0 ¼ 0.90), regions near the fixed end of
the elastica are surrounded by hexagonally packed grains
[45]. Bound by these regions, whose geometry is seen to
match that of a 2D hexagonal unit cell elastica deformations
tend towards an antisymmetric, overlapping fold—a shape
expected for large folds on fluid interfaces, but not
commonly observed [46]. Notably, λ remains constant
for ϕ < ϕj, yet decreases for ϕ ≥ ϕj.

We confirm this by plotting A0/λ as a function of
ffiffiffiffiffiffiffiffi

Δ/L
p

over a range of initial packing fractions in Fig. 3(c). For all
ϕ0 andΔ/L < 0.3, the normalized amplitude scales linearly
with

ffiffiffiffiffiffiffiffi

Δ/L
p

[Fig. 3(c), dashed black line], which is
consistent with the definition of λc. At larger confined
lengths, the ratio of amplitude to wavelength strongly
depends on whether the elastica is injected into a loose
(blue triangles) or jammed (red squares) granular state.
Within a loose granular array A0/λ follows the shape of the
antisymmetric, nonlinear elastica [Fig. 3(c), solid blue line]
[30,32]. The ratio of A0/λ rapidly diverges from the
classical behavior when the elastica elongates within a
jammed array.
As a granular medium transitions from below jamming

to a marginally stable jammed state, collective decreases in
interparticle distance lead to the development of hetero-
geneous force chains between contacting particles [47,48].
In the case of a monodisperse medium, this results in local
crystal structures that are difficult to deform, and these
crystals act to effectively constrain the elastica’s deforma-
tion. To illustrate this effect, we show experimental results
for two extreme cases: an elastica buckled in mode two that
can either (i) freely elongate within the granular medium, or
(ii) be completely confined in a crystalline geometry
imposed by the grains [Fig. 3(b)]. In the second case,
we used rigid walls that correspond to four local hexagonal
crystals surrounding the elastic beam, forming a 60° angle
with the horizontal, and creating a lozengelike shape of
characteristic length λg. This limiting case is similar to the
shape of the compacted region described by Kolb et al.
[43], and is partially illustrated by Fig. 3(a) (see black

(a)

(b)

(c)

FIG. 3. (a) For ϕ0 < ϕj, the elastica buckles to one side of the
enclosure, inducing jamming at a critical injection length Δc. At
ϕ0 ≥ ϕj, antisymmetric folding of the elastica occurs within a
lozenge-shaped region of the granular array. (b) Model experi-
ments demonstrate how crystalline structures in the granular
media effectively act as a rigid boundary, confining the elastica.
(c) A0/λ as a function of

ffiffiffiffiffiffiffiffi

Δ/L
p

. For ϕ < ϕj (blue triangles),
deformations follow the shape of a free elastica (blue solid line),
while above jamming (ϕ > ϕj, red squares), the presence of an
upper bound (corresponding to lozenge crystal structure), con-
fines the elastica. This upper limit was verified both experimen-
tally (black circles) and numerically (red line).

PHYSICAL REVIEW LETTERS 120, 078002 (2018)

078002-3



lines), where we observe the elastica surrounded by
granular crystals, which appear yellow in Fig. 3(a). As
the initial buckling of the elastic beam depends on the
packing fraction, we chose the minimum observed value of
λc as the characteristic length of our confinement. We
confirm that confinement within this space represents an
upper bound on the diverging ratio of A0/λ via experiments
[image sequence Fig. 3(b) and black points Fig. 3(c)] and
by numerically solving the equation for an elastica buckling
within a lozenge-shaped void [red line in Fig. 3(c)] [30].
These results suggest a means for studying the localization
of elastic structures within more complex granular con-
figurations, as different geometrically limiting cases will
emerge.
It appears from Fig. 3(c) that the elastica governs the

elastogranular behavior when ϕ < ϕj, while the granular
array governs the behavior when ϕ ≥ ϕj; however, this
trend breaks down at high packing fractions or in rare
cases where we observe highly localized elastica folds. At
large enough confinement, the granular monolayer can
yield by vertically dislodging a grain [49]. In Fig. 4, we
plot the maximum curvature of the elastica normalized by
its thickness, κmh, as a function of the grains packing
fraction ϕ for a short and a long injected arclength

(Δ/L0 ¼ 0.11 and 0.41 for the light and dark blue circles,
respectively), and indicate the curvature at which a grain
was dislodged (red squares). We note three regions in this
plot. In region I, we observe an equilibrium elastica
shape, and no grain dislodgings. Tracking the displace-
ment vectors of each grain for a characteristic experiment
in this region, we see that a high number of grains
close to the primary maxima A0 and A1 tend to displace
[Fig. 4(I)]. Granular configurations can force the elastica
to localize with a high curvature, and because we observe
granular motion tending to focus in a given direction, the
highly curved beam can act like a point force within the
array [Fig. 4(II)]. At the same packing fraction, we
sometimes observe more highly confined elastica shapes
composed of folds of high curvature, which can induce
dislodging within the granular array [Fig. 4(II)]. Finally,
beyond a critical packing fraction, dislodging events
appear to be independent of κmh [Fig. 4(III)]. To under-
stand the role of packing fraction on dislodging, we
homogeneously reduced the area occupied by a mono-
layer of grains absent of an elastica, and measured ϕ at
the first dislodging event. A small perturbation beyond a
critical packing fraction of ϕd ¼ 0.926 (black vertical
line) dislodges a grain, suggesting that the appearance of
dislodgings indicates the packing limit of these soft beads
[50]. Here again we observe a similar granular displace-
ment field as seen in region I, though confined to a
smaller region as expected from Eq. (2).
The wealth of elastogranular behaviors observed here

indicate an intricate coupling between geometrically non-
linear slender bodies and heterogenous, fragile matter. The
confinement and deformation of the slender structure is
highly dependent on the proximity of the granular array to
the jamming point, yet the competition between the
structure’s elastic energy and the granular matter’s local
order gives rise to a variety of elastogranular behaviors
(notably antisymmetric or overlapping folds and a defor-
mation length scale proportional to packing fraction) that
can be observed across a range of packing fractions and
confined lengths. These results will bring new insight into
the behavior of deformable structures within granular
matter, colloidal systems, and soft gels, and will be relevant
to modeling root growth and developing smart, steerable
needles.
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FIG. 4. (a) Maximum curvature of the elastica normalized by its
thickness κmh, as a function of the initial packing fraction ϕ0. The
light and dark blue circles describe κmh for an injected arclength
Δ/L0 ¼ 0.1 and 0.41, respectively. Red squares correspond to
κmh preceding a dislodging event. The light and dark gray
diamonds correspond to measurements from experiments with
rigid boundaries (see associated images). System behavior
described by three distinct regions (I,II,III). (b) Examples of
the vector fields of granular displacements for each region. Grain
opacity corresponds to the norm of their vector displacement.
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